Pecinta Matematika : Ketahuilah yang Ini

Bilangan bulat terkecil n sehingga n/2 adalah kuadrat sempurna, n/3 adalah kubik sempurna dan n/5 adalah pangkat 4 sempurna adalah 30233088000000.

Digit-digit yang mewakili huruf-huruf pada kata ODD, EVEN, PRIME dan COMPOSITE secara berurutan adalah ganjil(odd), genap (even), pima, dan komposit.

Setiap bilangan genap yang lebih besar dari 46 dapat dinyatakan sebagai jumlah dua ‘abundant number’. Abundant number adalah bilangan yang lebih kecil dari jumlah semua ‘proper divisor’. Proper divisor adalah semua pembagi dari sebuah bilangan yang tidak sama dengan bilangan itu sendiri

639172 adalah bilangan bulat terbesar yang digit-digit hasil pengkuadratannya tidak memuat digit yang ada pada bilangan itu sendiri. 639172² = 408,540,845,584

The Golden Ratio (Phi=1.61803…) dapat dinyatakan sebagai (√ 4 + √ (4!-4) )/4.

1, 6 and 120 are the only numbers which are both triangular and factorial.

8589934592 116415321826934814453125 (tidak ada digit 0 pada kedua bilangan)
= 1000000000000000000000000000000000
ini adalah bilangan terbesar yang diketahui memiliki sifat seperti itu

Pecahan 1/998999 memuat bilangan fibonacy.

1/998999=0.000001001002003005008013021034055089..

Hasil kali dari 4 bilangan asli berurutan tidak ada yang berbentuk bilangan kubik

A multidigit number with all its digits odd can never be a perfect square.

27, 58 dan 85 are three consecutive Smith numbers and 27 + 58 = 85 .

The number 3435 is the number such that 3435 = 3^3 +4^4 + 3^3 + 5^5 .

The number 3608528850368400786036725 is the largest number such that the number formed from first n digits is divisible by n.

The number FORTY is the only number in English language, all letters of which are in alphabetical order.

The nth fibonacci number Fn is divisible by 9, if and only if, n and Fn both are even.

The product of all divisors of a number n is sqrt(n^d), where d is no. of divisors of n.

The only number which is equal to the sum of subfactorial of its digits is 148349. (i.e. 148349 = !1+!4+!8+!3+!4+!9).

The only known pair of Twin Pseudoprimes(base-2) is 4369 and 4371.

Every Carmichael number is squarefree.

No Fibonacci number is equal to the product of two smaller Fibonacci numbers.

1 and 6 are the only triangular Numbers whose squares are also triangular numbers.

Every number greater than 11 is the sum of two composite numbers.

8549176320 is a curious number(containing all ten digits) whose digits are in alphabetical order.

In decimal system 6661661161 is the largest known square with two distinct non-zero digits.

10662526601 is the only known palindromic cube such that its cube root (i.e. 2201) is non-palindromic.

8114118 is the smallest multidigit palindrome such that 8114118th prime i.e. 143787341 is also palindrome.

Two consecutive numbers i.e. n and n+1 are always relatively prime.

The largest Triangular Number which is the product of three consecutive numbers is 258474216.

All Semiprimes are deficient numbers.

The smallest Fibonacci number containing all digits from 0 to 9 is F74 i.e. 1304969544928657.

Triangular numbers can never end in 2,4,7 or 9.

The digit in the tens place of a power of 7 is always 0 or 4.

All Composite Mersenne numbers are Strong Pseudoprimes (base-2).

There can be maximum five consecutive deficient Numbers and smallest such set is 7, 8, 9, 10 and 11.

There can not be four perfect squares in arithmetical progression.

The smallest triplet of consecutive Abundant Numbers is 171078830, 171078831, 171078832.

The largest known Fibonacci Number consisting of only odd digits is 17711.

41096 83 = 3410968

The smallest Fibonacci Number that is also a Smith Number is 1346269.

The numbers in the series 1, 11, 111, 1111, 11111, … are all Triangular Numbers in base-9.

The smallest titanic factorial is 450! . This has 1001 digits and is also known as Arabian Nights Factorial.

 

Sumber : http://www.daviddarling.info

 

About these ads

About labarasi

Guru Matematika

Posted on Januari 8, 2012, in Matematika and tagged , . Bookmark the permalink. 1 Komentar.

  1. As a web-site owner. Do you think like owning a web site or perhaps website
    is profitable? Also how would you get individuals to go to
    your web sites?

Berikan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Logout / Ubah )

Twitter picture

You are commenting using your Twitter account. Logout / Ubah )

Facebook photo

You are commenting using your Facebook account. Logout / Ubah )

Google+ photo

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

  • Back Link

  • Ikuti

    Get every new post delivered to your Inbox.

    Bergabunglah dengan 113 pengikut lainnya.

    %d blogger menyukai ini: