Soal Kompetisi Matematika :3-rd Mediterranean Mathematical Competition 2000

1. Let F = {1, 2, . . . , 100} and let G be any 10-element subset of F. Prove that there exist two disjoint nonempty subsets S and T of G with the same sum of elements.

2. Suppose that in the exterior of a convex quadrilateral ABCD equilateral triangles XAB, Y BC,ZCD,WDA with centroids S1, S2, S3, S4 respectively are constructed. Prove that S1S3⏊ S2S4 if and only if AC ⏊ BD.

3. Let c1, . . . , cn, b1, . . . , bn (n ≥ 2) be positive real numbers. Prove that the equation

has a unique solution (x1, . . . , xn) if and only if

4. Let P,Q,R, S be the midpoints of the sides BC,CD,DA,AB of a convex quadrilateral, respectively. Prove that

4(AP2 + BQ2 + CR2 + DS2) ≤ 5(AB2 + BC2 + CD2 + DA2).

Iklan

About labarasi

Guru Matematika

Posted on Mei 1, 2011, in Matematika. Bookmark the permalink. Tinggalkan komentar.

Tinggalkan Balasan

Isikan data di bawah atau klik salah satu ikon untuk log in:

Logo WordPress.com

You are commenting using your WordPress.com account. Logout / Ubah )

Gambar Twitter

You are commenting using your Twitter account. Logout / Ubah )

Foto Facebook

You are commenting using your Facebook account. Logout / Ubah )

Foto Google+

You are commenting using your Google+ account. Logout / Ubah )

Connecting to %s

  • Back Link

  • %d blogger menyukai ini: